New technologies for MRV of ocean CDR associated with the biological C pump- examples (mostly) from EXPORTS and OTZ

Ken Buesseler, with help from: D. Siegel, H. Sosik M. Estapa, C. Durkin, M. Omand and E. Ceballos-Romero

Biological Carbon Pump

Combined processes that remove CO₂ from the atmosphere and transport C to the deep sea

5-12 Gt C/yr leaving sun lit surface 1-2 Gt C/yr reaches 1000 m

BCP sets dissolved inorganic C (DIC) gradients- impacts solubility pump

Remove BCP and atmos. CO₂ increases 200 ppm

Change depth of remin. by 25 m and atmospheric CO₂ decreases by 10-30 ppm

BCP- Variable magnitude, changes with depth, hard to quantify precisely

Biologican C pump MRV for ocean CDR

- mostly relevant for upwelling tubes, ocean fertilization and seaweed CDR approaches

Durability depends upon how deep C is removed in the ocean

Diel migrations and most of the physical C "injection" pumps impact upper 1000m

To get deep enough for sequestration time scales >100 yr, mostly concerned with gravitational sinking

Ocean can only store carbon durably if it gets deep enough and in the right locations (& how would we know?)

Fraction of carbon stored for greater than 100 yrs

How do we measure the strength and efficiency of the biological C pump?

Direct collection of sinking particles

Sediment traps since 1970's.

Issues wrt collection efficiencies, swimmers and preservation
Ultimately limited coverage for MRV in space/time, if samples need to be returned

Imaging/optics

Count/image particle #'s and size- convert to C flux with sinking rate and C content Count/image particles as they sink vertically

Stocks/mass balances

Geochemical mass balances-

C (dissolved and particulate forms), and/or nutrients

O₂ (linked to production and remineralization)

Stocks are huge relative to fluxes making closing budgets difficult

Natural radionuclides-

provide "clocks" to quantify rates of particle removal physical usually small relative to radioactive disequilibrium terms in models

Examples of approaches suitable for MRV of ocean CDR

	Thorium-234	UVP camera	Optical Sed trap	Shadowgraph camera	MINIONS	TZEX trap and gels
How	Less Th = higher	Plankton & detrital	Optical light	Plankton & detrital	Detrital C flux & ID	Samples for
	CDR	images/ID	attenuance = C flux	images/ID		calibrations and ID
t-scale	Days-weeks	Minutes-weeks	Hours-days	Minutes-days	Minutes-weeks	Days-weeks
Depths	0-500m	0-6000 m	0-2000 m	0-1000+m	0-500+ m	0-1000+m
Size Range	C/Th on >50 um	>60-100 um - 1 cm	Non-imaging flux	50 um – 10 cm	1 mm – 1 cm	10 um – 10 cm
			sensor			
Area/volume	SMS scales (km)	0.7-1.1 L	10's km2 source	Several L/frame;	10's km2 source	10's km2 source
			funnel	20/sec	funnel	funnel
TRL	In-situ low	High	Med	Med	Low/med	Low/med
Cost/inst	<\$10K	\$27-50K	V1: \$15K?	>\$50K	<\$5K	\$100K
			V2: ?			
Platform	Surface float &	CTD, moorings,	Profiling floats &?	Towed and LRAUV	Lagr float	Profiling float
	AUVs	profiling floats				
Markets	**	**	**	*	**	*

US SOFeX results- just add iron! How did we quantify C loss out of surface?

Radionuclides profiles provide quantitative rates of C removal via sinking particles

C flux = Th flux x C/Th

At start of SOFeX, flux of sinking particles out of upper 60 m only With Fe & 28 days, flux increases and deeper

Expt. to look at Fe impacts
 on surface ecosystems
 1.3 tons Fe added
 80 μatm drawdown CO₂
 2100 tons C below 100m
 CDR MRV the hard way!

What if we could collect and measure thorium-234 in-situ?

On board collection-

- water or direct on columns (several L's)

Mini-sensors measure light
-scintillating beads or
Cerenkov detection
(high energy beta's)

Surface AV, buoy

pump & other sensors- Flu, pCO₂, etc.

Subsurface collection ports

Buesseler, Benitez-Nelson, O'Hara, Grate- RFI

Underwater Vision Profiler - UVP

- Images particles from 100 μm to 2.6 cm providing 4 Hz
- Can be deployed from CTD & on autonomous platforms
- Sample volume ~0.7 L (UVP6)
- Vignettes saved for off-line analyses for classifying large objects (> 0.6 mm)
- Data flows through EcoTaxa website

UVP-6 Picheral et al. (2021)

EXPORTS N. Atlantic-Siegel et al.

UVP-5 In Action During EXPORTS...

- EXPORTS sampled the demise of the North Atlantic Spring Bloom in May 2021
- Observations started as a diatom bloom ended within a retentive eddy feature
- White spaces are weather days
- Data from UVP's on 3 ships on CTD/Rosette

Iviay date

Sinking POC Flux from aggregate PSD

In practice...
$$POC_{uvp} = \int_{D_{min}}^{D_{max}} N(D) A D^b dD$$

assume power law for carbon content & sinking speed and fit the A & b coefficients (Guidi et al. 2008)

Fits are OK on global scales – but large uncertainties remain on local / regional scales

Next Steps: Improved particle ID; larger sampling volume to see larger particles; higher resolution for smaller particle sizes; fluorescence illumination to discriminate pigmented particles; calibration....

Optical Sediment Trap (OST)

Physical interception and optical detection of sinking particles

Direct flux measurement = no need to assume particle sinking speed

Carbon content must be inferred from light attenuation or images

"OST V1" = transmissometer

OST at BATS

OST signal of <u>sinking particles</u> over 18-24 hr at BATS- *Estapa et al. 2013*

Estapa et al., Bishop et al.

- Subtropical N Pacific
- Subpolar E Atlantic PAPSO DY077
- New England coastal
- Subpolar N Pacific OSP
- Subpolar E Atlantic PAPSO EXPORTS
- Subtropical N Atlantic BATS

Data compilation from published and unpublished sources: Estapa (UMaine), Durkin (MBARI), Omand (URI), Buesseler (WHOI), Baker (NOC).

Onset of high flux from North Atlantic bloom during EXPORTS starts on May 17th

Data example from EXPORTS (Estapa (UMaine), D'Asaro (UW/APL), Omand (URI), preliminary/unpublished)

Next steps:

"OST V2" development (Sequoia Scientific, Inc. and UMaine, with NSF-STTR support):

- Simple, non-imaging, quantitative POC flux sensor
- Designed for easy addition to distributed network of drifting platforms (e.g. BGC-Argo) or complement to imagers (e.g. MINIONS)

Improvements:

- Non-shading housing design
- Larger particle collection area
- Lower cost (target = \$10K once in commercial production)

"OST V2" concept

Estapa et al.

Shadowgraph imager

Sosik et al. lead Deployed on towed sled in N. Atlantic EXPORTS

~8 x 10 cm camera field, 30 cm depth

2.3 L per frame, 15 frames s⁻¹

Automated processing for target detection- 10,374,677 extracted ROIs Supervised machine learning classification- 29-category classifier applied to ROIs

TWILIGHT

ZONE

Abundant zooplankton groups occupy different water masses across the eddy edge

Marine snow size classes are spatially structured across the

Time-resolved imaging can quantify taxon-specific diel vertical migration

Next steps: LRAUV platform

MINION (MINiature IsOpycNal) floats

Upward looking/

camera

Deploy days-weeks, currently upper 500 m Goal- deploy "swarms" for multiple depth 4D sampling

M. Omand lead, w/ collab. at WHOI, MBARI, MIT, NASA

Next steps:

Added capabilities

- fish tags (track in situ currents)
- O₂ sensor
- horizontal camera for sinking rates

On board image processing & data transmission

Mass production- parts <\$1-2K

Calibrate C flux estimates from images with other devices (TZEX)

Twilight Zone Explorer (TZEX) - "ocean truthing" essential for MRV

Profiling float- NKE w/ sensors

UVP 6
Horz. mount
for sinking
speeds

Two sampling tubes for sinking particles

12 position sampling carousel
McLane Indust.

Deploy to park depth for collection - hours (D/N) to days/weeks

Profiling upper 1000 m w/std sensors and UVP

Flux collections

key to calibrations

preserved for geochemical,

microbial analyses

Polyacrylamide "gel" collections

K. Tradd, K. Buesseler, E. Ceballos-Romero, NKE, McLane

Scale bars: White = mm Blue = 100 µm

Durkin et al.

What size particles contribute most to C flux?

Small particles (<100 µm) were consistently ~5% of total POC flux Small particles export relatively more POC in low flux environments

How does attenuation differ between particle types?

Next steps: co-deployment TZEX w/ MINIONS & other sensors/imagers for C flux intercal

Examples of approaches suitable for MRV of ocean CDR

	Thorium-234	UVP camera	Optical Sed trap	Shadowgraph camera	MINIONS	TZEX trap and gels
How	Less Th = higher	Plankton & detrital	Optical light	Plankton & detrital	Detrital C flux & ID	Samples for
	CDR	images/ID	attenuance = C flux	images/ID		calibrations and ID
t-scale	Days-weeks	Minutes-weeks	Hours-days	Minutes-days	Minutes-weeks	Days-weeks
Depths	0-500m	0-6000 m	0-2000 m	0-1000+m	0-500+ m	0-1000+m
Size Range	C/Th on >50 um	>60-100 um – 1 cm	Non-imaging flux	50 um – 10 cm	1 mm – 1 cm	10 um – 10 cm
			sensor			
Area/volume	SMS scales (km)	0.7-1.1 L	10's km2 source	Several L/frame;	10's km2 source	10's km2 source
			funnel	20/sec	funnel	funnel
TRL	In-situ low	High	Med	Med	Low/med	Low/med
Cost/inst	<\$10K	\$27-50K	V1: \$15K?	>\$50K	<\$5K	\$100K
			V2: ?			
Platform	Surface float &	CTD, moorings,	Profiling floats &?	Towed and LRAUV	Lagr float	Profiling float
	AUVs	profiling floats				
Markets	**	**	**	*	**	*

